Преузмите комплетан рад/Download

Аутор/Authors: Вељко В. Алексић, Олга М. Ристић

DOI: 10.5937/ZRPFU2123167A

УДК: 37.091.33-027.22-057.875:795(497.11)“2020″


Апстракт: Одређивање и разумевање искуствa корисника у гејмификованим образовним окружењима представља актуелни изазов, нарочито када се анализира искуство тока (баланс изазова и вештина, свесних акција, јасних циљева, јасне повратне информације, осећај контроле итд.). Разлог за ово лежи у инструментима процене који су најчешће креирани и имплементирани тако да одвајају корисника од искуства тока и/или их није могуће масовно применити. У раду су представљени резултати истраживања у коме су моделирана искуства тока на основу логованих података (на пример, број акција мишем или просечно време одговора на повратну информацију) у гејмификованом образовном окружењу на узорку од 31 студента. Резултати указују на постојање корелација између логованих података и димензијa искуства тока.

Кључне речи: гејмификација, образовање, искуство тока.


Abstract: Determining and understanding the user experience in gamified educational environments is a contemporary challenge, especially when analyzing the flow experience (balance of challenge and skills, conscious actions, clear goals, clear feedback, sense of control, etc.). The reason for this lies in the assessment tools that most often created and implemented to separate the user from the experience of flow and/or cannot be applied en masse.The paper presents the results of a study in which flow experience was modeled based on data logs (e.g. number of mouse actions or average response time) in gamified educational environment on a sample of 31HE students. The results indicate the existence of correlations between data logs and flow experience dimensions.

Keywords: gamification, education, flow experience.


Akçapınar, G., Hasnine, M. N., Majumdar, R., Flanagan, B. & Ogata, H. (2019). Developing an early-warning system for spotting at-risk students by using eBook interaction logs. Smart Learning Environments, 6(1), 4. DOI 10.1186/s40561-019-0083-4.

Aleksić, V. (2019). Digital Game-based Learning Operationalization Strategies. Зборник радова Педагошког факултета у Ужицу, 22(21), 279–290. DOI 10.46793/Zbradova21.279A.

Bozkurt, A., Akgün-Özbek, E. & Zawacki-Richter, O. (2017). Trends and patterns in massive open online courses: Review and content analysis of research on MOOCs (2008-2015). International Review of Research in Open and Distributed Learning: IRRODL, 18(5), 118–147. DOI 10.19173/irrodl.v18i5.3080.

Buil, I., Catalán, S. & Martínez, E. (2019). The influence of flow on learning outcomes: An empirical study on the use of clickers. British Journal of Educational Technology, 50(1), 428–439. DOI 10.1111/bjet.12561.

Challco, G. C., Andrade, F. R., Borges, S. S., Bittencourt, I. I. & Isotani, S. (2016). Toward a unified modeling of learnerʼs growth process and flow theory. Journal of Educational Technology & Society, 19(2), 215–227.

Cózar-Gutiérrez, R. & Sáez-López, J. M. (2016). Game-based learning and gamification in initial teacher training in the social sciences: an experiment with Minecraft Edu. International Journal of Educational Technology in Higher Education, 13(1), 1–11.

Csikszentmihalhi, M. (2020). Finding flow: The psychology of engagement with everyday life. Hachette UK.

Oliveira dos Santos, W., Bittencourt, I. I., Isotani, S., Dermeval, D., Brandão Marques, L. & Frango Silveira, I. (2018). Flow Theory to Promote Learning in Educational Systems: Is it Really Relevant? Revista Brasileira de Informática Na Educação, 26(02), 29. DOI 10.5753/rbie.2018.26.02.29.

Erhel, S. & Jamet, E. (2019). Improving instructions in educational computer games: Exploring the relations between goal specificity, flow experience and learning outcomes. Computers in Human Behavior, 91, 106–114. DOI 10.1016/j.chb.2018.09.020.

Hair Jr, J. F., Hult, G. T. M., Ringle, C. & Sarstedt, M. (2016). A primer on partial least squares structural equation modeling (PLS-SEM). Sage publications.

Hamari, J. & Koivisto, J. (2014). Measuring flow in gamification: Dispositional flow scale-2. Computers in Human Behavior, 40, 133–143. DOI 10.1016/j.chb.2014.07.048.

Hamari, J., Koivisto, J. & Sarsa, H. (2014). Does Gamification Work? — A Literature Review of Empirical Studies on Gamification. 47th Hawaii International Conference on System Sciences. Waikoloa, Hawaii, USA, 3025–3034. DOI 10.1109/hicss.2014.377.

Henseler, J., Ringle, C. M. & Sinkovics, R. R. (2009). The use of partial least squares path modeling in international marketing. New Challenges to International Marketing, 277–319. DOI 10.1108/s1474-7979(2009)0000020014.

Hsieh, Y. H., Lin, Y. C. & Hou, H. T. (2016). Exploring the role of flow experience, learning performance and potential behavior clusters in elementary studentsʼ game-based learning. Interactive Learning Environments, 24(1), 178–193. DOI 10.1080/10494820.2013.834827.

Hsu, C. L. & Lu, H. P. (2004). Why do people play on-line games? An extended TAM with social influences and flow experience. Information & management, 41(7), 853-868. DOI 10.1016/j.im.2003.08.014.

Hursen, C. & Bas, C. (2019). Use of Gamification Applications in Science Education. International Journal of emerging technologies in Learning, 14(1). DOI 10.3991/ijet.v14i01.8894.

Jackson, S. A. & Eklund, R. C. (2002). Assessing flow in physical activity: The flow state scale–2 and dispositional flow scale–2. Journal of Sport and Exercise Psychology, 24(2), 133–150. DOI 10.1123/jsep.24.2.133.

Jackson, S., Eklund, B. & Martin, A. (2011). The flow manual the manual for the flow scales manual. sampler set. Mind, 2011, 1–85.

Koivisto, J. & Hamari, J. (2019). The rise of motivational information systems: A review of gamification research. International Journal of Information Management, 45, 191–210. DOI 10.1016/j.ijinfomgt.2018.10.013.

Lee, P. M., Jheng, S. Y. & Hsiao, T. C. (2014). Towards automatically detecting whether student is in flow. In International Conference on Intelligent Tutoring Systems. Honolulu, Hawaii, USA, 11–18. DOI 10.1007/978-3-319-07221-0_2.

López-Zambrano, J., Lara, J. A. & Romero, C. (2020). Towards portability of models for predicting students’ final performance in university courses starting from Moodle Logs. Applied Sciences, 10(1), 354. DOI 10.3390/app10010354.

Mousavinasab, E., Zarifsanaiey, N., R. Niakan Kalhori, S., Rakhshan, M., Keikha, L. & Ghazi Saeedi, M. (2021). Intelligent tutoring systems: a systematic review of characteristics, applications, and evaluation methods. Interactive Learning Environments, 29(1), 142–163. DOI 10.1080/10494820.2018.1558257.

Mubarak, A. A., Cao, H. & Zhang, W. (2020). Prediction of students’ early dropout based on their interaction logs in online learning environment. Interactive Learning Environments, 1–20. DOI 10.1080/10494820.2020.1727529.

Oliveira, W., Toda, A., Palomino, P., Rodrigues, L., Isotani, S. & Shi, L. (2019). Towards automatic flow experience identification in educational systems: A theory-driven approach. In Extended Abstracts of the Annual Symposium on Computer-Human Interaction in Play Companion Extended Abstracts, Barcelona, Spain, 581–588. DOI 10.1145/3341215.3356311.

Oliveira, W., Toda, A. M., Palomino, P. T., Rodrigues, L., Shi, L. & Isotani, S. (2020). Towards Automatic Flow Experience Identification in Educational Systems: A Qualitative Study. In Anais do XXXI Simpósio Brasileiro de Informática na Educação, Natal, Brasil, 702–711. DOI 10.5753/cbie.sbie.2020.702.

Pastushenko, O., Hruška, T. & Zendulka, J. (2018). Increasing studentsʼ motivation by using virtual learning environments based on gamification mechanics: Implementation and evaluation of gamified assignments for students. In Proceedings of the Sixth International Conference on Technological Ecosystems for Enhancing Multiculturality, Salamanca, Spain, 755–760. DOI 10.1145/3284179.3284310.

Perttula, A., Kiili, K., Lindstedt, A. & Tuomi, P. (2017). Flow experience in game based learning–a systematic literature review. International Journal of Serious Games, 4(1), 57–72. DOI 10.17083/ijsg.v4i1.151.

Semerci, Y. C. & Goularas, D. (2020). Evaluation of Students’ Flow State in an E-learning Environment Through Activity and Performance Using Deep Learning Techniques. Journal of Educational Computing Research, 0735633120979836. DOI 10.1177/0735633120979836.

Wang, X., Gülenman, T., Pinkwart, N., de Witt, C., Gloerfeld, C. & Wrede, S. (2020). Automatic Assessment of Student Homework and Personalized Recommendation. In 2020 IEEE 20th International Conference on Advanced Learning Technologies (ICALT), Tartu, Estonia, 150–154. DOI 10.1109/icalt49669.2020.00051.

Wong, K. K. K. (2013). Partial least squares structural equation modeling (PLS-SEM) techniques using SmartPLS. Marketing Bulletin, 24(1), 1–32.