Скочи на садржај

Преузмите комплетан рад/Download

Аутори:

Милан П. Миликић, Сања М. Маричић, Ненад Р. Вуловић

DOI 10.5937/ZRPFU2224127M 

УДК 37.091.39:004.4

Примена софтвера GeoGebra при формирању појма обима фигуре  у млађим разредима основне школе

Апстракт: Бројна експериментална истраживања по­казала су предности коришћења образовних софтвера у настави математике. Један од динамичких образовних софтвера који је у последње време стекао велику популарност у настави математике је GeoGebra. Геометријске трансформа­ције и динамичке функције овог програмског пакета могу се ефи­касно при­менити у разним нивоима школовања, од основне школе до универзитет­ског нивоа. Циљ овог рада је да кроз изабране при­мере предста­вимо неке од могућности GeoGebra софтвера у настави математике у мла­ђим разредима основне школе. На конкретним примерима показано је како се GeoGebra може користити у раду са ученицима у формирању појма обим фигуре у равни (правоугаоник, квадрат и троугао).

Кључне речи: математика, геометрија, GeoGebra, обим фигуре, млађи разреди основне школе.


The GeoGebra software application  in the PERIMETER concept formation in lower grades of elementary school

Summary: Numerous experimental studies have shown the advantages of using educational software in teaching mathematics. One of the dynamic educational software that has recently gained great popularity in teaching mathematics is GeoGebra. The geometric transformations and dynamic functions of the software can be effectively applied at various education levels, from elementary school to university level. The aim of this paper is to present, through selected examples, some possibilities of  GeoGebra software that can help students in lower grades of elementary school become proficient in the concept of the perimeter of a figure in a plane (rectangle, square and triangle), thus allowing them to follow each step in the pattern formation for calculating the perimeter.

Keywords: mathematics, geometry, GeoGebra, perimeter, lower grades of elementary school.

Литература

Arbain, N. & Shukor, N. A. (2015). The effects of GeoGebra on students achievement. Procedia-Social and Behavioral Sciences, 172, 208214.

Battista, M. (2002). Learning geometry in a dynamic computer environment. Teaching Children Mathematics, 8(6), 333338.

Baturo, A. & Nason, R. (1996). Student teachersʼ subject matter knowledge within the domain of area measurement. Educational Studiesin Mathematics, 31, 235–268.

Bauer, J. & Kenton, J. (2005). Toward Technology Integration in the Schools: Why It Isn’t Happening. Journal of Technology and Teacher Education, 13(4), 519546.

Boo, J. Y. & Leong, K. E. (2016). Teaching and learning geometry in primary school using GeoGebra. In W. S. Yang, D. B. Meade & K. Khairiree (eds.): Teaching and Learning Mathematics, Sciences and Engineering through Technology: Proceedings of the Twenty First Asian Technology Conference in Mathematics (289–300).

Bruder, R. (2008). TIM – A two-year model test on the calculator use from class 7 and 9. In O. Figueras & A. Sepúlveda, A. (eds.), Proceedings of the Joint Meeting of the 32nd Conference of the International Group for the Psychology of Mathematics Education, and the XX North American Chapter, Vol. 1 (1–9). Morelia, Michoacán, México: PME.

Bu, L., Spector, J. M. & Haciomeroglu, E. S. (2011). Toward model-centered mathematics learning and instruction using GeoGebra: A theoretical framework for learning mathematics with understanding. In L. Bu & R. Schoen (eds.):  Model-Centered Learning: Pathways to Mathematical Understanding Using GeoGebra (1340). Rotterdam: Sense Publishers.

Budinski, N. (2013). A survey on use of computers in mathematical education in Serbia. The teaching of mathematics, 16(1), 4246.

Bulut, M., Ünlütürk Akçakın, H., Kaya, G. & Akçakın, V. (2016). The effects of Geogebra on third grade primary students’ academic achievement in fractions. International Electronic Journal of Mathematics Education, 11(2), 347–255.

Burrill, G., Breaux, G., Kastberg, S., Leatham, K. & Sanchez, W. (2002). Handheld graphing technology at the secondary level: Research findings and implications for classroom practice. Dallas, TX: Texas Instruments Corp.

Van Hiele, P. (1986). Structure and insight: a theory of mathematics education. Orlando, FL: Academic Press.

Vighi, P. & Marchini, C. (2011). A gap between learning and teaching geometry. Paper presented at the CERME 7 Conference, Rzeszow, Poland.

Glasnović Gracin, D. (2008). Računalo u nastavi matematike: Teorijska podloga i metodičke smjernice. Matematika i škola, 46, 1015.

Greefrath, G., Hertleif, C. & Siller, H-S. (2018). Mathematical modelling with digital tools-a quantitative study on mathematising with dynamic geometry software. ZDM, 50, 233244.

Guncaga, J. i Žilková, K. (2019). Visualisation as a Method for the Development of the Term Rectangle for Pupils in Primary School. European Journal of Contemporary Education, 8(1), 52–68.

Далингер, В. А. и Князева О. О. (2004). Когнитивно-визуальный подход к обучениюматематике. Омск: ОмГПУ.

Dijanić, Ž. & Trupčević, G. (2017). The impact of using GeoGebra interactive applets on conceptual and procedural knowledge. In Z. Kolar-Begović, R. Kolar-Šuper i Lj. Jukić Matić (eds.). The 6th International Scientific Colloquium Mathematics and Children (Mathematics education as a science and a profession), Osijek (161–174). Osijek: Element.

Downes, T. (2002). Children’s and Families’ Use of Computers in Australian Homes. Contemporary Issues in Early Childhood, 3(2), 182–196.

Duval, R. (1998). Geometry from a cognitive point of view. In C. Mammana & V. Villani (eds.). Perspectives on the Teaching of Geometry for the 21st century (37–52). Dordrecht: Kluwer Academic Publishers.

Duval, R. (2006). A cognitive analysis of problems of comprehension in the learning of mathematics. Educational Studies in Mathematics, 61, 103–131.

Ђокић, О. и Зељић, М. (2017). Теорије развоја геометријског мишљења према Ван Хилу, Фишбајну и Удемон-Кузниаку. Тeме, 41(3), 623637.

Ellington, A. (2003). A Meta-Analysis of the Effects of Calculatorson Students’ Achievement and Attitude Levels in Precollege Mathematics Classes. Journal for Research in Mathematics Education, 34(5), 433463.

Zacharos, K. (2006). Prevailing Educational Practices of Area Measurement and Students’ Failure. Journal of Mathematical Behavior, 25(3), 224–239.

Zevenbergen, R. & Logan, H. (2008). Computer use by Preschool Children: Rethinking Practice as Digital Natives Come to Preschool. Australasian Journal of Early Childhood, 33(1), 37–44.

Iranzo, N. & Fortuny, J. M. (2011). Influence of GeoGebra on problem solving strategies. In L. Bu & R. Schoen (eds.): Model-Centered Learning: Pathways to Mathematical Understanding Using GeoGebra (91103). Rotterdam: Sense Publishers.

Little, C. (2009). Interactive Geometry in the Classroom: Old Barriers & NewOpportunities. Mathematics in School, 38(2), 911.

Љајко, Е. (2014). Утицај Geogebra-e на предавање и учење аналитичке геометрије у средњој школи. (Необјављена докторска дисертација). Нови Сад: Природно-математички факултет.

Maričić, S. & Stamatović, J. (2017). The Effect of Preschool Mathematics Education in Development of Geometry Concepts in Children. EURASIA Journal of Mathematics, Science and Technology Education, 13(9), 6175–6187.

Martín-Caraballo, A. M. & Tenorio-Villalón, Á. F. (2015). Teaching Numerical Methods for Non-linear Equations with GeoGebra-Based Activities. Mathematics Education, 10(2), 53–65.

Mayer, R. (2001). Multi-Media Learning. University of California, Santa Barbara, Cambrige University Press.

Маричић, С. и Стојкановић, Ј. (2021). Тачкаста и квадратна мрежа у настави геометрије у млађим разредима основне школе. Зборник радова, Педагошког факултета у Ужицу, 23, 111–126. DOI 10.5937/ZRPFU2123111M.

Миликић, М., Вуловић, Н. и Михајловић, А. (2020). Геометријска интерпретација разломака применом образовног софтвера ГеоГебра. Узданица, 17(1), 307–317.

Moyer-Packenham, P. S., Ulmer, L. A. & Anderson, K. L. (2012). Examining Pictorial Models and Virtual Manipulatives for Third-Grade Fraction Instruction. Journal of Interactive Online Learning, 11(3),103–120.

Mukiri, М. I. (2016). Feasibility of using geogebra in the teaching and learning of geometry concepts in secondary schools in Kajiado County, Kenya. (Doctoral thesis). School of Еducation of Кenyatta University.

Надрљански, Ђ. (1994). Образовно-рачунарски софтвер. Зрењанин: Технички факултет.

National Council of Teachers of Mathematics (NCTM) (2000). Principles and Standards for school mathematics. Reston, VA: National Council of Teachers of Mathematics.

Piaget, J. & Inhelder, B. (1967). The child’s conception of space. New York: Norton.

Plowman, L. & Stephen, C. (2005). Children, Play and Computers in Preschool Education. British Journal of Educational Technology, 36, 145–157.

Правилник о плану и програму наставе и учења за други разред основног образовања и васпитања (2018). Просветни гласник, Службени гласник Републике Србије бр. 16/2018.

Правилник о плану и програму наставе и учења за трећи разред основног образовања и васпитања (2019). Просветни гласник, Службени гласник Републике Србије бр. 5/2019.

Psycharis, G. (2006). Dynamic manipulation schemes of geometrical constructions: Instrumental genesis as an abstraction process. Proceedings of PME 30, 4, 385–392.

Shadaan, P. & Leong, K. E. (2013). Effectiveness of Using GeoGebra on Studentsʼ Understanding in Learning Circles. Malaysian Online Journal of Educational Technology, 1(4), 111.

Thambi, N. & Eu, L. K. (2013). Effect  of students’ achievement in fractions using GeoGebra. SAINSAB, 16, 97106.

Fischbein, E. (1977). Image and concept in learning mathematics. Educational Studies in Mathematics, 8, 153–165.

Furner, J. M. & Marinas, C. A. (2012). Connecting geometry, measurement, and algebra using GeoGebra for the elementary grades. In Twenty-Fourth Annual International Conference on Technology in Collegiate Mathematics (63–72). Orlando, Florida: Pearson Education Inc.

Hanč, J., Lukáč, S., Sekerák, J. & Šveda, D. (2011). Geogebra – a complex digital tool for highly effective math and science teaching. Emerging eLearning Technologies and Applications (ICETA), 2011 9th International Conference on. IEEE, 131–136.

Haugland, S. & Wright, J. (1997). Young Children and Technology, a World of Discovery. New York: Allyn and Bacon.

Hohenwarter, M., Hohenwarter, J., Kreis, Y. & Lavicza, Z. (2008). Teaching and Learning Calculus with Free Dynamic Mathematics Software GeoGebra. Research and development in the teaching and learning of calculus, Mexico.

Chino, K., Morozumi, T., Arai, H., Ogihara, F., Oguchi, Y. & Miyazaki, M. (2007). The effects of ‘spatial geometry curriculum with 3-D DGS’ in lower secondary school mathematics. In Woo, J. H., Lew, H. C., Park, K. S. & Seo, D. Y. (eds.). Proceedings of the 31st Conference of the International Group for the Psychology of Mathematics Education, Vol. 2, 137–144. Seoul: PME.

Clements, D. & Sarama, J. (2003). Young Children and Technology: What Does the Research Say?. Young Children, 58(6), 34–40.

Xistouri, X. & Pitta-Pantazi, D. (2013). Using GeoGebra to develop primary school students’ understanding of reflection. North American GeoGebra Journal, 2(1), 19–23.

Yelland, N. (2005). The future is now: A review of the literature on the useof computers in early childhood education (1994–2004). AACE Journal, 13(3), 201–232.

Yelland, N. (2007). Shift to the Future: Rethinking Learning with New Technologies in Education. New York: Routledge.

Yeo, J. K. K. (2008). Teaching area and perimeter: Mathematics-pedagogical-content knowledge-in-action. In G. Merrilyn, B. Ray & M. Katie (еds.): Navigating currents and charting directions: Proceedings of the 31st annual Conference of the Mathematics Education Research Group of Australasia, University of Queensland, Brisbane 28th June-1st July 2008 (621–627). Adelaide, S. A.: Mathematics Education Research Group of Australasia.